Association of Polar Early Career Scientists

 

To submit your poster to the APECS Virtual Poster Session, simply fill out the form and upload your poster as a pdf (Maximum File Size is 3 MB) .

Note: If your poster has been presented at a conference, please include the conference information so we can properly acknowledge the original presentation of this work.

Please read the Terms of Submission before submitting your poster.

Virtual Posters

TEMPERATURE-ALTERED PREDATOR-PREY DYNAMICS IN FRESHWATER PONDS IN ARCTIC GREENLAND
Lauren E. Culler and Matthew P. Ayres
Terrestrial
Department of Biology, Dartmouth College, Hanover, USA
2011 American Geophysical Union
2011
Temperature sets the pace of many biological processes including species interactions. Describing the response of terrestrial and aquatic habitats to climate warming therefore requires studies of cross-trophic level dynamics. I use freshwater pond ecosystems in Arctic Greenland to study how the thermal environment shapes interactions between predators and their prey. This system is of interest because warming trends are notable, freshwaters are responding rapidly and dynamically to changes in temperature, and the biology of freshwaters is intimately linked to the terrestrial environment. My focal species are the Arctic mosquito (Diptera: Culicidae, Aedes nigripes) and its invertebrate predator, a predaceous diving beetle (Coleoptera: Dytiscidae, Colymbetes dolabratus). Both species develop as larvae in snow-melt ponds in May and June. I used experimental and observational studies to test effects of temperature on larval mosquito growth rates and predation rates by C. dolabratus. Results indicate strong effects of temperature on growth rate and development time but weak effects of temperature on consumption of mosquitoes by their predators. Incorporation of measured temperature response functions into a mosquito demographic model will elucidate how mosquito population dynamics in Arctic Greenland may change with temperature. For example, warming increases growth rate and decreases development time of mosquito larvae, which shortens the time larvae are exposed to predation. Additionally, decreased development time leads to an earlier mosquito emergence, with potential consequences for the health of wildlife. Evaluation of this model will reveal the importance of considering cross-trophic level dynamics when predicting mosquito population response to warming. Future studies will address interesting properties emerging from modeling, such as how shorter development time affects adult size and fitness, and connecting results to terrestrial systems in Arctic Greenland.
mosquito, ponds, Greenland, temperature
  • I agree to the terms of submission.
  • I hold the copyright to this material and grant APECS the right to display this poster.

Contact APECS

APECS International Directorate
UiT The Arctic University of Norway
Huginbakken 14
9019 Tromsø
Norway
Email: info(at)apecs.is

Our Sponsors

APECS Directorate Sponsor
 
UiTNPIFRAM
 
Further Sponsors and Partners for APECS projects, activities and events